Smart GaN-Based Inverters for **Grid-tied Energy Storage Systems**

DOE SBIR Phase II

U.S. DOE/OE Energy Storage Program Peer Review 09/27/2016

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. **Department of Energy's National Nuclear Security** Administration under contract DE-AC04-94AL85000. SAND2016-9304 C

Acknowledgement

InnoCit greatly appreciates support of Dr. Imre Gyuk and Dr. Stan Atcitty through DOE SBIR grant DE-SC0013818.

Motivation

- Energy storage systems and high-power bidirectional converters are the backbone of the future grid.
- Si technology has relatively high conduction losses compared to wide bandgap switches.
- GaN switches can operate at higher switching frequencies.
- By 2022, over 40 GW of energy storage systems will be installed in gridconnected applications.

System Specifications

- GaN-based multilevel inverter
- Nominal input voltage: 900V
- Output voltage: 3-phase 480V
- Power rating: 75kW and 100kVA

Fast-Paced Technology

Technology / manufacturer	Transphorm	EPC	GaN systems G (pin 2) G (pin 4) S (pin 3)	
Switch topology	Cascode: GaN JFET + Si MOSFET	Enhancement mode FET	Enhancement mode FET	
Material	GaN + Si	GaN	GaN	
Part number	TPH3205WS	EPC2034	GS66508T	
Voltage	600 V	200 V	650 V	
Current	36 A	31 A	30 A	
Rds-on @ 150°C	0.10 Ω	0.015 Ω	0.050 Ω	
CRSS (Reverse transfer)	17.5 pF	5 pF	2 pF (this is the fastest power GaN commercialized capable of operating up to 100MHz)	
Heatsink Plate		no	Yes	
Unit price	\$12	\$5.02 @ 500 units	\$12	

Achievements

- First ever floating supply integrated GaN gate driver + switch (commercialized)
- First ever modular GaN-based 7.5-kW inverter (TRL-4)

Final System

- GaN-based inverter using the commercially available switches
- 75-kW output power using ten modular 7.5-kW inverter units
- Flexible multi-chemistry input supporting any combination of 1 to 10 individual racks
- Peak efficiency of at least 99%
- Volume of 7.5 ft³ and weight of 300 lbs. for the 75-kW inverter
- Noise level < 45 dBa
- Estimated cost: \$10,500.00 or \$0.140/W (\$2,000.00 lower than the expected cost using EPC)

Commercial Competitiveness

Features	InnoCit's GaN Inverter	GTIB-100 Princeton Power	MPS-100 Dynapower	EssPro c250 ABB
Peak Efficiency	>99.1%	>96.5%	>96.5%	>96%
CEC Efficiency	>98.5%	>94.5%	>94%	93.9%
End-user Price	\$15,500 \$0.205/w	\$37,000 \$0.296/w	\$58,000 \$0.58/w	\$130,000 \$0.65/w
Modularity at 7.5-kW level	Yes	No	No	No
Noise (dBA)	<45	<75	<60	<80
Weight (lb)	300	1,020	1,545	2,100
Volume (ft ³)	7.5	28	48	41
Material	GaN	Si	Si	Si

Work Plan

- Design of the central controller, auxiliary supply, and user interface
- Finalizing the design of individual modules of 7.5-kW GaN inverters
- Development of 20 7.5-kW prototypes
- Development of the central controller
- Programing and communication handling
- Testing and TRL-5 verification of the GaN inverter modules
- Design of the stack drawers
- Design of the main inverter rack
- Selection of connectors, main bus-bar, ventilation, and thermal analysis
- Development of two complete prototypes
- TRL-6 testing
- Testing in a relevant environment (TRL-7 testing)
- Demonstrations and fine tuning

Contact Information

Mehdi Ferdowsi
InnoCit, LLC
President & CEO
ferdowsi@innocit.com

